⬆️ upgrade dependencies
BIN
common/clarity/1.jpg
Normal file
After Width: | Height: | Size: 3.4 MiB |
BIN
common/clarity/2.jpg
Normal file
After Width: | Height: | Size: 3.7 MiB |
Before Width: | Height: | Size: 246 KiB |
Before Width: | Height: | Size: 15 KiB |
BIN
common/clarity/3.png
Normal file
After Width: | Height: | Size: 5.5 KiB |
BIN
common/clarity/4.jpg
Normal file
After Width: | Height: | Size: 953 KiB |
Before Width: | Height: | Size: 276 KiB |
BIN
common/clarity/5.jpg
Normal file
After Width: | Height: | Size: 3.7 MiB |
@@ -1,260 +1,183 @@
|
||||
package clarity
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"context"
|
||||
"fmt"
|
||||
"image"
|
||||
_ "image/jpeg"
|
||||
_ "image/png"
|
||||
"math"
|
||||
"runtime"
|
||||
"sync"
|
||||
|
||||
"golang.org/x/sync/errgroup"
|
||||
"gocv.io/x/gocv"
|
||||
"golang.org/x/sync/semaphore"
|
||||
)
|
||||
|
||||
// Detector 图片模糊检测器
|
||||
type Detector struct {
|
||||
baseThreshold float64 // 基准阈值
|
||||
sampleScale int // 采样比例基数
|
||||
edgeBoost float64 // 边缘增强系数
|
||||
noiseFloor float64 // 噪声基底
|
||||
channelWeights [3]float64 // RGB通道权重
|
||||
adaptiveSampling bool // 启用自适应采样
|
||||
regionWeights []float64 // 区域权重矩阵
|
||||
concurrencyLimit int64 // 最大并发数
|
||||
weightedSemaphore *semaphore.Weighted
|
||||
pool sync.Pool // 内存池
|
||||
// 模糊检测器
|
||||
type ConcurrentDetector struct {
|
||||
maxWorkers int64 // 最大并发数
|
||||
meanThreshold float64 // 均值阈值
|
||||
laplaceStdThreshold float64 // Laplace标准差阈值
|
||||
sem *semaphore.Weighted
|
||||
}
|
||||
|
||||
type Option func(*Detector)
|
||||
type Option func(*ConcurrentDetector)
|
||||
|
||||
// NewDetector 创建检测器实例
|
||||
func NewDetector(opts ...Option) *Detector {
|
||||
d := &Detector{
|
||||
baseThreshold: 85.0,
|
||||
sampleScale: 2,
|
||||
edgeBoost: 1.0,
|
||||
noiseFloor: 5.0,
|
||||
channelWeights: [3]float64{0.299, 0.587, 0.114},
|
||||
adaptiveSampling: true,
|
||||
concurrencyLimit: int64(runtime.NumCPU() * 2),
|
||||
// 默认参数
|
||||
func NewConcurrentDetector(opts ...Option) *ConcurrentDetector {
|
||||
d := &ConcurrentDetector{
|
||||
maxWorkers: int64(runtime.NumCPU() * 2),
|
||||
meanThreshold: 5.0, // 原始值5
|
||||
laplaceStdThreshold: 20.0, // 原始值20
|
||||
}
|
||||
|
||||
d.pool.New = func() interface{} {
|
||||
return &scanContext{
|
||||
sum: 0,
|
||||
sumSq: 0,
|
||||
}
|
||||
}
|
||||
|
||||
d.weightedSemaphore = semaphore.NewWeighted(d.concurrencyLimit)
|
||||
|
||||
for _, opt := range opts {
|
||||
opt(d)
|
||||
}
|
||||
|
||||
d.sem = semaphore.NewWeighted(d.maxWorkers)
|
||||
return d
|
||||
}
|
||||
|
||||
// 配置选项 ---------------------------------------------------
|
||||
|
||||
func WithBaseThreshold(t float64) Option {
|
||||
return func(d *Detector) {
|
||||
d.baseThreshold = t
|
||||
// 配置选项 -------------------------------------------------
|
||||
func WithMeanThreshold(t float64) Option {
|
||||
return func(d *ConcurrentDetector) {
|
||||
d.meanThreshold = t
|
||||
}
|
||||
}
|
||||
|
||||
func WithSampleScale(n int) Option {
|
||||
return func(d *Detector) {
|
||||
d.sampleScale = 1 << uint(maxInt(0, n))
|
||||
func WithLaplaceStdThreshold(t float64) Option {
|
||||
return func(d *ConcurrentDetector) {
|
||||
d.laplaceStdThreshold = t
|
||||
}
|
||||
}
|
||||
|
||||
func WithEdgeBoost(factor float64) Option {
|
||||
return func(d *Detector) {
|
||||
d.edgeBoost = clamp(factor, 0.5, 2.0)
|
||||
func WithMaxWorkers(n int) Option {
|
||||
return func(d *ConcurrentDetector) {
|
||||
d.maxWorkers = int64(n)
|
||||
}
|
||||
}
|
||||
|
||||
func WithNoiseFloor(floor float64) Option {
|
||||
return func(d *Detector) {
|
||||
d.noiseFloor = math.Max(0, floor)
|
||||
func (d *ConcurrentDetector) ClarityCheck(img image.Image) (bool, error) {
|
||||
if img == nil {
|
||||
return false, fmt.Errorf("nil image input")
|
||||
}
|
||||
|
||||
mat, err := gocv.ImageToMatRGB(img)
|
||||
if err != nil || mat.Empty() {
|
||||
if mat.Empty() == false {
|
||||
mat.Close()
|
||||
}
|
||||
return false, err
|
||||
}
|
||||
matClone := mat.Clone()
|
||||
if mat.Channels() != 1 {
|
||||
gocv.CvtColor(mat, &matClone, gocv.ColorRGBToGray)
|
||||
}
|
||||
mat.Close()
|
||||
|
||||
// Canny检测部分
|
||||
destCanny := gocv.NewMat()
|
||||
defer destCanny.Close()
|
||||
gocv.Canny(matClone, &destCanny, 200, 200)
|
||||
|
||||
destCannyC := gocv.NewMat()
|
||||
defer destCannyC.Close()
|
||||
destCannyD := gocv.NewMat()
|
||||
defer destCannyD.Close()
|
||||
gocv.MeanStdDev(destCanny, &destCannyC, &destCannyD)
|
||||
if destCannyD.GetDoubleAt(0, 0) == 0 {
|
||||
matClone.Close()
|
||||
return false, nil
|
||||
}
|
||||
|
||||
// Laplace检测部分
|
||||
destA := gocv.NewMat()
|
||||
defer destA.Close()
|
||||
gocv.Laplacian(matClone, &destA, gocv.MatTypeCV64F, 3, 1, 0, gocv.BorderDefault)
|
||||
|
||||
destC := gocv.NewMat()
|
||||
defer destC.Close()
|
||||
destD := gocv.NewMat()
|
||||
defer destD.Close()
|
||||
gocv.MeanStdDev(destA, &destC, &destD)
|
||||
|
||||
destMean := gocv.NewMat()
|
||||
defer destMean.Close()
|
||||
gocv.Laplacian(matClone, &destMean, gocv.MatTypeCV16U, 3, 1, 0, gocv.BorderDefault)
|
||||
mean := destMean.Mean()
|
||||
matClone.Close()
|
||||
|
||||
// 使用可配置阈值(mean.Val1 >5 || destD.GetDoubleAt>20)
|
||||
result := mean.Val1 > d.meanThreshold && destD.GetDoubleAt(0, 0) > d.laplaceStdThreshold
|
||||
return result, nil
|
||||
}
|
||||
|
||||
func WithConcurrency(n int) Option {
|
||||
return func(d *Detector) {
|
||||
d.concurrencyLimit = int64(maxInt(1, n))
|
||||
d.weightedSemaphore = semaphore.NewWeighted(d.concurrencyLimit)
|
||||
}
|
||||
type Result struct {
|
||||
Blurred bool
|
||||
Err error
|
||||
}
|
||||
|
||||
// Detect 执行模糊检测
|
||||
func (d *Detector) Detect(imgData []byte) (isBlurred bool, confidence float64, err error) {
|
||||
img, _, err := image.Decode(bytes.NewReader(imgData))
|
||||
if err != nil {
|
||||
return true, 0.0, err
|
||||
}
|
||||
func (d *ConcurrentDetector) BatchDetect(ctx context.Context, images <-chan image.Image) <-chan Result {
|
||||
results := make(chan Result)
|
||||
var wg sync.WaitGroup
|
||||
|
||||
bounds := img.Bounds()
|
||||
width, height := bounds.Dx(), bounds.Dy()
|
||||
|
||||
if width < 32 || height < 32 {
|
||||
return true, 0.0, nil
|
||||
}
|
||||
|
||||
ctx := d.pool.Get().(*scanContext)
|
||||
defer d.pool.Put(ctx)
|
||||
ctx.reset()
|
||||
|
||||
step := d.calculateStep(width, height)
|
||||
|
||||
g, groupCtx := errgroup.WithContext(context.Background())
|
||||
processingCtx, cancel := context.WithCancel(groupCtx)
|
||||
defer cancel()
|
||||
|
||||
for y := bounds.Min.Y; y < bounds.Max.Y; y += step {
|
||||
for x := bounds.Min.X; x < bounds.Max.X; x += step {
|
||||
x, y := x, y // 捕获循环变量
|
||||
|
||||
if err := d.weightedSemaphore.Acquire(processingCtx, 1); err != nil {
|
||||
go func() {
|
||||
defer close(results)
|
||||
for img := range images {
|
||||
if err := d.sem.Acquire(ctx, 1); err != nil {
|
||||
break
|
||||
}
|
||||
wg.Add(1)
|
||||
|
||||
g.Go(func() error {
|
||||
defer d.weightedSemaphore.Release(1)
|
||||
go func(img image.Image) {
|
||||
defer wg.Done()
|
||||
defer d.sem.Release(1)
|
||||
|
||||
blurred, err := d.ClarityCheck(img)
|
||||
select {
|
||||
case <-processingCtx.Done():
|
||||
return nil
|
||||
default:
|
||||
case results <- Result{Blurred: blurred, Err: err}:
|
||||
case <-ctx.Done():
|
||||
}
|
||||
|
||||
if x <= 0 || y <= 0 || x >= bounds.Max.X-1 || y >= bounds.Max.Y-1 {
|
||||
return nil
|
||||
}
|
||||
|
||||
gray := d.calculateGray(img, x, y)
|
||||
val := d.calculateLaplacian(img, x, y, gray)
|
||||
weight := d.getRegionWeight(x, y, bounds)
|
||||
|
||||
ctx.mu.Lock()
|
||||
ctx.sum += val * weight
|
||||
ctx.sumSq += (val * weight) * (val * weight)
|
||||
ctx.mu.Unlock()
|
||||
|
||||
return nil
|
||||
})
|
||||
}(img)
|
||||
}
|
||||
}
|
||||
wg.Wait()
|
||||
}()
|
||||
|
||||
if err := g.Wait(); err != nil {
|
||||
return true, 0.0, err
|
||||
}
|
||||
|
||||
n := float64(((width / step) * (height / step)) - 4)
|
||||
if n <= 0 {
|
||||
return true, 0.0, nil
|
||||
}
|
||||
|
||||
mean := ctx.sum / n
|
||||
variance := (ctx.sumSq/n - mean*mean) * 1e6
|
||||
|
||||
dynamicThreshold := d.calculateDynamicThreshold(width, height)
|
||||
confidence = math.Max(0, math.Min(1, (variance-d.noiseFloor)/(dynamicThreshold-d.noiseFloor)))
|
||||
|
||||
return variance < dynamicThreshold, confidence, nil
|
||||
return results
|
||||
}
|
||||
|
||||
// 私有方法 ---------------------------------------------------
|
||||
/*
|
||||
func main() {
|
||||
// 初始化检测器(调整阈值参数)
|
||||
detector := NewConcurrentDetector(
|
||||
WithMeanThreshold(8.0), // 提高均值阈值
|
||||
WithLaplaceStdThreshold(25.0), // 提高标准差阈值
|
||||
WithMaxWorkers(8), // 设置并发数
|
||||
)
|
||||
|
||||
func (d *Detector) calculateStep(width, height int) int {
|
||||
if !d.adaptiveSampling {
|
||||
return d.sampleScale
|
||||
}
|
||||
// 准备测试图片
|
||||
img := loadImage("test.jpg")
|
||||
|
||||
area := width * height
|
||||
switch {
|
||||
case area > 4000*3000:
|
||||
return d.sampleScale * 4
|
||||
case area > 2000*1500:
|
||||
return d.sampleScale * 2
|
||||
default:
|
||||
return d.sampleScale
|
||||
// 单张检测
|
||||
blurred, _ := detector.clarityCheck(img)
|
||||
fmt.Println("Blurred:", blurred)
|
||||
|
||||
// 批量检测
|
||||
ctx := context.Background()
|
||||
imgChan := make(chan image.Image, 10)
|
||||
go func() {
|
||||
for i := 0; i < 10; i++ {
|
||||
imgChan <- loadImage(fmt.Sprintf("image%d.jpg", i))
|
||||
}
|
||||
close(imgChan)
|
||||
}()
|
||||
|
||||
results := detector.BatchDetect(ctx, imgChan)
|
||||
for res := range results {
|
||||
if res.Err != nil {
|
||||
fmt.Println("Error:", res.Err)
|
||||
continue
|
||||
}
|
||||
fmt.Println("Result:", res.Blurred)
|
||||
}
|
||||
}
|
||||
|
||||
func (d *Detector) calculateGray(img image.Image, x, y int) float64 {
|
||||
r, g, b, _ := img.At(x, y).RGBA()
|
||||
return d.channelWeights[0]*float64(r>>8) +
|
||||
d.channelWeights[1]*float64(g>>8) +
|
||||
d.channelWeights[2]*float64(b>>8)
|
||||
}
|
||||
|
||||
func (d *Detector) calculateLaplacian(img image.Image, x, y int, center float64) float64 {
|
||||
getGray := func(x, y int) float64 {
|
||||
r, g, b, _ := img.At(x, y).RGBA()
|
||||
return d.channelWeights[0]*float64(r>>8) +
|
||||
d.channelWeights[1]*float64(g>>8) +
|
||||
d.channelWeights[2]*float64(b>>8)
|
||||
}
|
||||
|
||||
return math.Abs(4*center-
|
||||
getGray(x-1, y)-
|
||||
getGray(x+1, y)-
|
||||
getGray(x, y-1)-
|
||||
getGray(x, y+1)) * d.edgeBoost
|
||||
}
|
||||
|
||||
func (d *Detector) calculateDynamicThreshold(width, height int) float64 {
|
||||
areaRatio := float64(width*height) / 250000.0
|
||||
return d.baseThreshold*math.Pow(areaRatio, 0.65) + d.noiseFloor
|
||||
}
|
||||
|
||||
func (d *Detector) getRegionWeight(x, y int, bounds image.Rectangle) float64 {
|
||||
if len(d.regionWeights) == 0 {
|
||||
return 1.0
|
||||
}
|
||||
|
||||
size := int(math.Sqrt(float64(len(d.regionWeights))))
|
||||
if size == 0 {
|
||||
return 1.0
|
||||
}
|
||||
|
||||
nx := float64(x-bounds.Min.X) / float64(bounds.Dx())
|
||||
ny := float64(y-bounds.Min.Y) / float64(bounds.Dy())
|
||||
|
||||
ix := int(nx * float64(size))
|
||||
iy := int(ny * float64(size))
|
||||
idx := iy*size + ix
|
||||
|
||||
if idx >= 0 && idx < len(d.regionWeights) {
|
||||
return d.regionWeights[idx]
|
||||
}
|
||||
return 1.0
|
||||
}
|
||||
|
||||
// 辅助函数 ---------------------------------------------------
|
||||
|
||||
type scanContext struct {
|
||||
sum float64
|
||||
sumSq float64
|
||||
mu sync.Mutex
|
||||
}
|
||||
|
||||
func (c *scanContext) reset() {
|
||||
c.sum = 0
|
||||
c.sumSq = 0
|
||||
}
|
||||
|
||||
func maxInt(a, b int) int {
|
||||
if a > b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
func clamp(value, min, max float64) float64 {
|
||||
return math.Max(min, math.Min(max, value))
|
||||
}
|
||||
*/
|
||||
|
@@ -1,62 +0,0 @@
|
||||
package clarity
|
||||
|
||||
import (
|
||||
"gocv.io/x/gocv"
|
||||
"image"
|
||||
)
|
||||
|
||||
// 清晰度检测
|
||||
func Clarity(img image.Image) (bool, error) {
|
||||
mat, err := gocv.ImageToMatRGB(img)
|
||||
if err != nil || mat.Empty() {
|
||||
if mat.Empty() == false {
|
||||
mat.Close()
|
||||
}
|
||||
return false, err
|
||||
}
|
||||
matClone := mat.Clone()
|
||||
// 如果图片是多通道 就进去转换
|
||||
if mat.Channels() != 1 {
|
||||
// 将图像转换为灰度显示
|
||||
gocv.CvtColor(mat, &matClone, gocv.ColorRGBToGray)
|
||||
}
|
||||
mat.Close()
|
||||
|
||||
destCanny := gocv.NewMat()
|
||||
|
||||
destCannyC := gocv.NewMat()
|
||||
|
||||
destCannyD := gocv.NewMat()
|
||||
// 边缘检测
|
||||
gocv.Canny(matClone, &destCanny, 200, 200)
|
||||
// 求矩阵的均值与标准差
|
||||
gocv.MeanStdDev(destCanny, &destCannyC, &destCannyD)
|
||||
destCanny.Close()
|
||||
destCannyC.Close()
|
||||
if destCannyD.GetDoubleAt(0, 0) == 0 {
|
||||
destCannyD.Close()
|
||||
matClone.Close()
|
||||
return false, nil
|
||||
}
|
||||
destCannyD.Close()
|
||||
|
||||
destC := gocv.NewMat()
|
||||
destD := gocv.NewMat()
|
||||
destA := gocv.NewMat()
|
||||
// Laplace算子
|
||||
gocv.Laplacian(matClone, &destA, gocv.MatTypeCV64F, 3, 1, 0, gocv.BorderDefault)
|
||||
gocv.MeanStdDev(destA, &destC, &destD)
|
||||
destC.Close()
|
||||
destA.Close()
|
||||
destMean := gocv.NewMat()
|
||||
gocv.Laplacian(matClone, &destMean, gocv.MatTypeCV16U, 3, 1, 0, gocv.BorderDefault)
|
||||
mean := destMean.Mean()
|
||||
destMean.Close()
|
||||
matClone.Close()
|
||||
if mean.Val1 > 5 || destD.GetDoubleAt(0, 0) > 20 {
|
||||
destD.Close()
|
||||
return true, nil
|
||||
}
|
||||
destD.Close()
|
||||
return false, nil
|
||||
}
|
@@ -1,27 +1,30 @@
|
||||
package clarity
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"image"
|
||||
_ "image/jpeg"
|
||||
_ "image/png"
|
||||
"os"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestClarity(t *testing.T) {
|
||||
|
||||
//detector := NewDetector(
|
||||
// WithConcurrency(8), WithBaseThreshold(90), WithEdgeBoost(1.2), WithSampleScale(1))
|
||||
//imgData, _ := os.ReadFile("4.png")
|
||||
//blurred, confidence, err := detector.Detect(imgData)
|
||||
//if err != nil {
|
||||
// t.Error(err)
|
||||
//}
|
||||
//t.Log(blurred, confidence)
|
||||
imgData, _ := os.ReadFile("2.png")
|
||||
img, _, err := image.Decode(bytes.NewReader(imgData))
|
||||
clarity, err := Clarity(img)
|
||||
imgData, err := os.Open("2.jpg")
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
t.Log(clarity)
|
||||
img, _, err := image.Decode(imgData)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
detector := NewConcurrentDetector(WithMeanThreshold(13.0), // 提高均值阈值
|
||||
WithLaplaceStdThreshold(25.0), // 提高标准差阈值
|
||||
WithMaxWorkers(8), // 设置并发数
|
||||
)
|
||||
check, err := detector.ClarityCheck(img)
|
||||
if err != nil {
|
||||
t.Error(err)
|
||||
}
|
||||
t.Log(check)
|
||||
}
|
||||
|
@@ -7,3 +7,8 @@ const (
|
||||
ImageTypeGif = "gif"
|
||||
ImageTypeShared = "shared"
|
||||
)
|
||||
|
||||
const (
|
||||
Encrypt int64 = 1
|
||||
NoEncrypt int64 = 0
|
||||
)
|
||||
|
@@ -1,106 +0,0 @@
|
||||
package main
|
||||
|
||||
import (
|
||||
"image"
|
||||
"image/draw"
|
||||
"image/png"
|
||||
"log"
|
||||
"os"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestImgEncrypt(t *testing.T) {
|
||||
// 1. 读取并强制转换为RGBA
|
||||
inputFile, err := os.Open("E:\\Go_WorkSpace\\schisandra-album-cloud-microservices\\common\\img_encrypt\\input.png")
|
||||
if err != nil {
|
||||
log.Fatal("打开文件失败:", err)
|
||||
}
|
||||
defer inputFile.Close()
|
||||
|
||||
srcImg, err := png.Decode(inputFile)
|
||||
if err != nil {
|
||||
log.Fatal("解码失败:", err)
|
||||
}
|
||||
|
||||
bounds := srcImg.Bounds()
|
||||
rgba := image.NewRGBA(bounds)
|
||||
draw.Draw(rgba, bounds, srcImg, bounds.Min, draw.Src)
|
||||
|
||||
// 2. 安全加密(处理有效像素区)
|
||||
key := []byte{0x1F, 0x3A, 0x7B, 0x9C} // 示例密钥(推荐长度4/8/16)
|
||||
secureXor(rgba, key)
|
||||
|
||||
// 3. 保存加密图像(禁用压缩)
|
||||
outputFile, err := os.Create("encrypted.png")
|
||||
if err != nil {
|
||||
log.Fatal("创建文件失败:", err)
|
||||
}
|
||||
defer outputFile.Close()
|
||||
|
||||
encoder := png.Encoder{CompressionLevel: png.NoCompression}
|
||||
if err := encoder.Encode(outputFile, rgba); err != nil {
|
||||
log.Fatal("保存失败:", err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestImgDecrypt(t *testing.T) {
|
||||
// 1. 读取加密图像
|
||||
inputFile, err := os.Open("E:\\Go_WorkSpace\\schisandra-album-cloud-microservices\\common\\img_encrypt\\encrypted.png")
|
||||
if err != nil {
|
||||
log.Fatal("打开加密文件失败:", err)
|
||||
}
|
||||
defer inputFile.Close()
|
||||
|
||||
encImg, err := png.Decode(inputFile)
|
||||
if err != nil {
|
||||
log.Fatal("解码失败:", err)
|
||||
}
|
||||
|
||||
// 2. 转换为RGBA
|
||||
bounds := encImg.Bounds()
|
||||
rgba := image.NewRGBA(bounds)
|
||||
draw.Draw(rgba, bounds, encImg, bounds.Min, draw.Src)
|
||||
|
||||
// 3. 解密(使用相同密钥)
|
||||
key := []byte{0x1F, 0x3A, 0x7B, 0x9C} // 必须与加密一致
|
||||
secureXor(rgba, key)
|
||||
|
||||
// 4. 保存解密结果
|
||||
outputFile, err := os.Create("decrypted.png")
|
||||
if err != nil {
|
||||
log.Fatal("创建解密文件失败:", err)
|
||||
}
|
||||
defer outputFile.Close()
|
||||
|
||||
encoder := png.Encoder{CompressionLevel: png.NoCompression}
|
||||
if err := encoder.Encode(outputFile, rgba); err != nil {
|
||||
log.Fatal("保存失败:", err)
|
||||
}
|
||||
}
|
||||
|
||||
// 通用加密/解密函数
|
||||
// 安全加密函数
|
||||
func secureXor(img *image.RGBA, key []byte) {
|
||||
keyLen := len(key)
|
||||
if keyLen == 0 {
|
||||
log.Fatal("密钥不能为空")
|
||||
}
|
||||
|
||||
bounds := img.Bounds()
|
||||
data := img.Pix
|
||||
stride := img.Stride
|
||||
width := bounds.Dx() * 4 // 每行实际需要的字节数
|
||||
|
||||
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
|
||||
rowStart := (y - bounds.Min.Y) * stride
|
||||
// 严格限定处理范围为有效像素区
|
||||
end := rowStart + width
|
||||
if end > len(data) {
|
||||
end = len(data)
|
||||
}
|
||||
|
||||
for pos := rowStart; pos < end; pos++ {
|
||||
data[pos] ^= key[pos%keyLen]
|
||||
}
|
||||
}
|
||||
}
|
Before Width: | Height: | Size: 246 KiB |