🐳 add docker file

This commit is contained in:
2025-01-23 15:24:59 +08:00
parent c6af9a0461
commit fc95d73adb
27 changed files with 5117 additions and 269 deletions

View File

@@ -0,0 +1,31 @@
package aiservicelogic
import (
"context"
"schisandra-album-cloud-microservices/app/aisvc/rpc/internal/svc"
"schisandra-album-cloud-microservices/app/aisvc/rpc/pb"
"github.com/zeromicro/go-zero/core/logx"
)
type CaffeClassificationLogic struct {
ctx context.Context
svcCtx *svc.ServiceContext
logx.Logger
}
func NewCaffeClassificationLogic(ctx context.Context, svcCtx *svc.ServiceContext) *CaffeClassificationLogic {
return &CaffeClassificationLogic{
ctx: ctx,
svcCtx: svcCtx,
Logger: logx.WithContext(ctx),
}
}
// CaffeClassification
func (l *CaffeClassificationLogic) CaffeClassification(in *pb.CaffeClassificationRequest) (*pb.CaffeClassificationResponse, error) {
// todo: add your logic here and delete this line
return &pb.CaffeClassificationResponse{}, nil
}

View File

@@ -43,8 +43,12 @@ func NewFaceRecognitionLogic(ctx context.Context, svcCtx *svc.ServiceContext) *F
// FaceRecognition 人脸识别
func (l *FaceRecognitionLogic) FaceRecognition(in *pb.FaceRecognitionRequest) (*pb.FaceRecognitionResponse, error) {
toJPEG, err := l.ConvertImageToJPEG(in.GetFace())
if err != nil {
return nil, err
}
// 提取人脸特征
faceFeatures, err := l.svcCtx.FaceRecognizer.RecognizeSingle(in.GetFace())
faceFeatures, err := l.svcCtx.FaceRecognizer.RecognizeSingle(toJPEG)
if err != nil {
return nil, err
}
@@ -82,7 +86,7 @@ func (l *FaceRecognitionLogic) FaceRecognition(in *pb.FaceRecognitionRequest) (*
// 人脸分类
classify := l.svcCtx.FaceRecognizer.ClassifyThreshold(faceFeatures.Descriptor, 0.6)
if classify >= 0 {
if classify >= 0 && classify < len(ids) {
return &pb.FaceRecognitionResponse{
FaceId: int64(ids[classify]),
}, nil
@@ -92,6 +96,26 @@ func (l *FaceRecognitionLogic) FaceRecognition(in *pb.FaceRecognitionRequest) (*
return l.saveNewFace(in, faceFeatures, hashKey)
}
// ConvertImageToJPEG 将非 JPEG 格式的图片字节数据转换为 JPEG
func (l *FaceRecognitionLogic) ConvertImageToJPEG(imageData []byte) ([]byte, error) {
// 使用 image.Decode 解码图像数据
img, _, err := image.Decode(bytes.NewReader(imageData))
if err != nil {
return nil, fmt.Errorf("failed to decode image: %v", err)
}
// 创建一个缓冲区来存储 JPEG 格式的数据
var jpegBuffer bytes.Buffer
// 将图片编码为 JPEG 格式
err = jpeg.Encode(&jpegBuffer, img, nil)
if err != nil {
return nil, fmt.Errorf("failed to encode image to JPEG: %v", err)
}
return jpegBuffer.Bytes(), nil
}
// 保存新的人脸样本到数据库和 Redis
func (l *FaceRecognitionLogic) saveNewFace(in *pb.FaceRecognitionRequest, faceFeatures *face.Face, hashKey string) (*pb.FaceRecognitionResponse, error) {
// 人脸有效性判断 (大小必须大于50)

View File

@@ -0,0 +1,79 @@
package aiservicelogic
import (
"context"
"fmt"
"gocv.io/x/gocv"
"image"
"schisandra-album-cloud-microservices/app/aisvc/rpc/internal/svc"
"schisandra-album-cloud-microservices/app/aisvc/rpc/pb"
"github.com/zeromicro/go-zero/core/logx"
)
type TfClassificationLogic struct {
ctx context.Context
svcCtx *svc.ServiceContext
logx.Logger
}
func NewTfClassificationLogic(ctx context.Context, svcCtx *svc.ServiceContext) *TfClassificationLogic {
return &TfClassificationLogic{
ctx: ctx,
svcCtx: svcCtx,
Logger: logx.WithContext(ctx),
}
}
// TfClassification is a server endpoint to classify an image using TensorFlow.
func (l *TfClassificationLogic) TfClassification(in *pb.TfClassificationRequest) (*pb.TfClassificationResponse, error) {
className, source, err := l.ClassifyImage(in.GetImage())
if err != nil {
return nil, err
}
return &pb.TfClassificationResponse{
Score: source,
ClassName: className,
}, nil
}
// ClassifyImage 从字节数据分类图像,返回分类标签和最大概率值
func (l *TfClassificationLogic) ClassifyImage(imageBytes []byte) (string, float32, error) {
// 解码字节数据为图像
img, err := gocv.IMDecode(imageBytes, gocv.IMReadColor)
if err != nil || img.Empty() {
return "", 0, fmt.Errorf("failed to decode image: %v", err)
}
defer func(img *gocv.Mat) {
_ = img.Close()
}(&img)
// 将图像 Mat 转换为 224x224 blob以便分类器分析
blob := gocv.BlobFromImage(img, 1.0, image.Pt(224, 224), gocv.NewScalar(0, 0, 0, 0), true, false)
// 将 blob 输入分类器
l.svcCtx.TfNet.SetInput(blob, "input")
// 运行网络的正向传递
prob := l.svcCtx.TfNet.Forward("softmax2")
// 将结果重塑为 1x1000 矩阵
probMat := prob.Reshape(1, 1)
// 确定最可能的分类
_, maxVal, _, maxLoc := gocv.MinMaxLoc(probMat)
// 获取分类描述
desc := ""
if maxLoc.X < 1000 {
desc = l.svcCtx.TfDesc[maxLoc.X]
}
// 清理资源
_ = blob.Close()
_ = prob.Close()
_ = probMat.Close()
return desc, maxVal, nil
}

View File

@@ -28,3 +28,15 @@ func (s *AiServiceServer) FaceRecognition(ctx context.Context, in *pb.FaceRecogn
l := aiservicelogic.NewFaceRecognitionLogic(ctx, s.svcCtx)
return l.FaceRecognition(in)
}
// TfClassification
func (s *AiServiceServer) TfClassification(ctx context.Context, in *pb.TfClassificationRequest) (*pb.TfClassificationResponse, error) {
l := aiservicelogic.NewTfClassificationLogic(ctx, s.svcCtx)
return l.TfClassification(in)
}
// CaffeClassification
func (s *AiServiceServer) CaffeClassification(ctx context.Context, in *pb.CaffeClassificationRequest) (*pb.CaffeClassificationResponse, error) {
l := aiservicelogic.NewCaffeClassificationLogic(ctx, s.svcCtx)
return l.CaffeClassification(in)
}

View File

@@ -3,11 +3,14 @@ package svc
import (
"github.com/Kagami/go-face"
"github.com/redis/go-redis/v9"
"gocv.io/x/gocv"
"schisandra-album-cloud-microservices/app/aisvc/model/mysql"
"schisandra-album-cloud-microservices/app/aisvc/model/mysql/query"
"schisandra-album-cloud-microservices/app/aisvc/rpc/internal/config"
"schisandra-album-cloud-microservices/common/caffe_classifier"
"schisandra-album-cloud-microservices/common/face_recognizer"
"schisandra-album-cloud-microservices/common/redisx"
"schisandra-album-cloud-microservices/common/tf_classifier"
)
type ServiceContext struct {
@@ -15,15 +18,25 @@ type ServiceContext struct {
FaceRecognizer *face.Recognizer
DB *query.Query
RedisClient *redis.Client
TfNet *gocv.Net
TfDesc []string
CaffeNet *gocv.Net
CaffeDesc []string
}
func NewServiceContext(c config.Config) *ServiceContext {
redisClient := redisx.NewRedis(c.RedisConf.Host, c.RedisConf.Pass, c.RedisConf.DB)
_, queryDB := mysql.NewMySQL(c.Mysql.DataSource, c.Mysql.MaxOpenConn, c.Mysql.MaxIdleConn, redisClient)
tfClassifier, tfDesc := tf_classifier.NewTFClassifier()
caffeClassifier, caffeDesc := caffe_classifier.NewCaffeClassifier()
return &ServiceContext{
Config: c,
FaceRecognizer: face_recognizer.NewFaceRecognition(),
DB: queryDB,
RedisClient: redisClient,
TfNet: tfClassifier,
TfDesc: tfDesc,
CaffeNet: caffeClassifier,
CaffeDesc: caffeDesc,
}
}