261 lines
5.7 KiB
Go
261 lines
5.7 KiB
Go
package clarity
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"image"
|
|
_ "image/jpeg"
|
|
_ "image/png"
|
|
"math"
|
|
"runtime"
|
|
"sync"
|
|
|
|
"golang.org/x/sync/errgroup"
|
|
"golang.org/x/sync/semaphore"
|
|
)
|
|
|
|
// Detector 图片模糊检测器
|
|
type Detector struct {
|
|
baseThreshold float64 // 基准阈值
|
|
sampleScale int // 采样比例基数
|
|
edgeBoost float64 // 边缘增强系数
|
|
noiseFloor float64 // 噪声基底
|
|
channelWeights [3]float64 // RGB通道权重
|
|
adaptiveSampling bool // 启用自适应采样
|
|
regionWeights []float64 // 区域权重矩阵
|
|
concurrencyLimit int64 // 最大并发数
|
|
weightedSemaphore *semaphore.Weighted
|
|
pool sync.Pool // 内存池
|
|
}
|
|
|
|
type Option func(*Detector)
|
|
|
|
// NewDetector 创建检测器实例
|
|
func NewDetector(opts ...Option) *Detector {
|
|
d := &Detector{
|
|
baseThreshold: 85.0,
|
|
sampleScale: 2,
|
|
edgeBoost: 1.0,
|
|
noiseFloor: 5.0,
|
|
channelWeights: [3]float64{0.299, 0.587, 0.114},
|
|
adaptiveSampling: true,
|
|
concurrencyLimit: int64(runtime.NumCPU() * 2),
|
|
}
|
|
|
|
d.pool.New = func() interface{} {
|
|
return &scanContext{
|
|
sum: 0,
|
|
sumSq: 0,
|
|
}
|
|
}
|
|
|
|
d.weightedSemaphore = semaphore.NewWeighted(d.concurrencyLimit)
|
|
|
|
for _, opt := range opts {
|
|
opt(d)
|
|
}
|
|
return d
|
|
}
|
|
|
|
// 配置选项 ---------------------------------------------------
|
|
|
|
func WithBaseThreshold(t float64) Option {
|
|
return func(d *Detector) {
|
|
d.baseThreshold = t
|
|
}
|
|
}
|
|
|
|
func WithSampleScale(n int) Option {
|
|
return func(d *Detector) {
|
|
d.sampleScale = 1 << uint(maxInt(0, n))
|
|
}
|
|
}
|
|
|
|
func WithEdgeBoost(factor float64) Option {
|
|
return func(d *Detector) {
|
|
d.edgeBoost = clamp(factor, 0.5, 2.0)
|
|
}
|
|
}
|
|
|
|
func WithNoiseFloor(floor float64) Option {
|
|
return func(d *Detector) {
|
|
d.noiseFloor = math.Max(0, floor)
|
|
}
|
|
}
|
|
|
|
func WithConcurrency(n int) Option {
|
|
return func(d *Detector) {
|
|
d.concurrencyLimit = int64(maxInt(1, n))
|
|
d.weightedSemaphore = semaphore.NewWeighted(d.concurrencyLimit)
|
|
}
|
|
}
|
|
|
|
// Detect 执行模糊检测
|
|
func (d *Detector) Detect(imgData []byte) (isBlurred bool, confidence float64, err error) {
|
|
img, _, err := image.Decode(bytes.NewReader(imgData))
|
|
if err != nil {
|
|
return true, 0.0, err
|
|
}
|
|
|
|
bounds := img.Bounds()
|
|
width, height := bounds.Dx(), bounds.Dy()
|
|
|
|
if width < 32 || height < 32 {
|
|
return true, 0.0, nil
|
|
}
|
|
|
|
ctx := d.pool.Get().(*scanContext)
|
|
defer d.pool.Put(ctx)
|
|
ctx.reset()
|
|
|
|
step := d.calculateStep(width, height)
|
|
|
|
g, groupCtx := errgroup.WithContext(context.Background())
|
|
processingCtx, cancel := context.WithCancel(groupCtx)
|
|
defer cancel()
|
|
|
|
for y := bounds.Min.Y; y < bounds.Max.Y; y += step {
|
|
for x := bounds.Min.X; x < bounds.Max.X; x += step {
|
|
x, y := x, y // 捕获循环变量
|
|
|
|
if err := d.weightedSemaphore.Acquire(processingCtx, 1); err != nil {
|
|
break
|
|
}
|
|
|
|
g.Go(func() error {
|
|
defer d.weightedSemaphore.Release(1)
|
|
|
|
select {
|
|
case <-processingCtx.Done():
|
|
return nil
|
|
default:
|
|
}
|
|
|
|
if x <= 0 || y <= 0 || x >= bounds.Max.X-1 || y >= bounds.Max.Y-1 {
|
|
return nil
|
|
}
|
|
|
|
gray := d.calculateGray(img, x, y)
|
|
val := d.calculateLaplacian(img, x, y, gray)
|
|
weight := d.getRegionWeight(x, y, bounds)
|
|
|
|
ctx.mu.Lock()
|
|
ctx.sum += val * weight
|
|
ctx.sumSq += (val * weight) * (val * weight)
|
|
ctx.mu.Unlock()
|
|
|
|
return nil
|
|
})
|
|
}
|
|
}
|
|
|
|
if err := g.Wait(); err != nil {
|
|
return true, 0.0, err
|
|
}
|
|
|
|
n := float64(((width / step) * (height / step)) - 4)
|
|
if n <= 0 {
|
|
return true, 0.0, nil
|
|
}
|
|
|
|
mean := ctx.sum / n
|
|
variance := (ctx.sumSq/n - mean*mean) * 1e6
|
|
|
|
dynamicThreshold := d.calculateDynamicThreshold(width, height)
|
|
confidence = math.Max(0, math.Min(1, (variance-d.noiseFloor)/(dynamicThreshold-d.noiseFloor)))
|
|
|
|
return variance < dynamicThreshold, confidence, nil
|
|
}
|
|
|
|
// 私有方法 ---------------------------------------------------
|
|
|
|
func (d *Detector) calculateStep(width, height int) int {
|
|
if !d.adaptiveSampling {
|
|
return d.sampleScale
|
|
}
|
|
|
|
area := width * height
|
|
switch {
|
|
case area > 4000*3000:
|
|
return d.sampleScale * 4
|
|
case area > 2000*1500:
|
|
return d.sampleScale * 2
|
|
default:
|
|
return d.sampleScale
|
|
}
|
|
}
|
|
|
|
func (d *Detector) calculateGray(img image.Image, x, y int) float64 {
|
|
r, g, b, _ := img.At(x, y).RGBA()
|
|
return d.channelWeights[0]*float64(r>>8) +
|
|
d.channelWeights[1]*float64(g>>8) +
|
|
d.channelWeights[2]*float64(b>>8)
|
|
}
|
|
|
|
func (d *Detector) calculateLaplacian(img image.Image, x, y int, center float64) float64 {
|
|
getGray := func(x, y int) float64 {
|
|
r, g, b, _ := img.At(x, y).RGBA()
|
|
return d.channelWeights[0]*float64(r>>8) +
|
|
d.channelWeights[1]*float64(g>>8) +
|
|
d.channelWeights[2]*float64(b>>8)
|
|
}
|
|
|
|
return math.Abs(4*center-
|
|
getGray(x-1, y)-
|
|
getGray(x+1, y)-
|
|
getGray(x, y-1)-
|
|
getGray(x, y+1)) * d.edgeBoost
|
|
}
|
|
|
|
func (d *Detector) calculateDynamicThreshold(width, height int) float64 {
|
|
areaRatio := float64(width*height) / 250000.0
|
|
return d.baseThreshold*math.Pow(areaRatio, 0.65) + d.noiseFloor
|
|
}
|
|
|
|
func (d *Detector) getRegionWeight(x, y int, bounds image.Rectangle) float64 {
|
|
if len(d.regionWeights) == 0 {
|
|
return 1.0
|
|
}
|
|
|
|
size := int(math.Sqrt(float64(len(d.regionWeights))))
|
|
if size == 0 {
|
|
return 1.0
|
|
}
|
|
|
|
nx := float64(x-bounds.Min.X) / float64(bounds.Dx())
|
|
ny := float64(y-bounds.Min.Y) / float64(bounds.Dy())
|
|
|
|
ix := int(nx * float64(size))
|
|
iy := int(ny * float64(size))
|
|
idx := iy*size + ix
|
|
|
|
if idx >= 0 && idx < len(d.regionWeights) {
|
|
return d.regionWeights[idx]
|
|
}
|
|
return 1.0
|
|
}
|
|
|
|
// 辅助函数 ---------------------------------------------------
|
|
|
|
type scanContext struct {
|
|
sum float64
|
|
sumSq float64
|
|
mu sync.Mutex
|
|
}
|
|
|
|
func (c *scanContext) reset() {
|
|
c.sum = 0
|
|
c.sumSq = 0
|
|
}
|
|
|
|
func maxInt(a, b int) int {
|
|
if a > b {
|
|
return a
|
|
}
|
|
return b
|
|
}
|
|
|
|
func clamp(value, min, max float64) float64 {
|
|
return math.Max(min, math.Min(max, value))
|
|
}
|