56 lines
2.0 KiB
TypeScript
56 lines
2.0 KiB
TypeScript
import * as nsfwjs from "nsfwjs";
|
|
import {NSFWJS} from "nsfwjs";
|
|
import * as tf from "@tensorflow/tfjs";
|
|
|
|
|
|
const initNSFWJs = async (): Promise<NSFWJS> => {
|
|
let nsfwModelCache: NSFWJS | null = null; // 缓存模型实例
|
|
// 如果模型已经加载,则直接返回缓存
|
|
try {
|
|
// 首先尝试从 IndexedDB 加载模型
|
|
nsfwModelCache = await nsfwjs.load("indexeddb://nsfwjs-model", {size: 224, type: "graph"});
|
|
console.log("NSFWJS 模型成功从 IndexedDB 加载");
|
|
} catch (_error) {
|
|
console.warn("IndexedDB 中未找到模型,正在从网络加载...");
|
|
// 如果 IndexedDB 加载失败,从 URL 加载模型并保存到 IndexedDB
|
|
nsfwModelCache = await nsfwjs.load("/tfjs/nsfw/mobilenet_v2_mid/", {size: 224, type: "graph"});
|
|
await nsfwModelCache.model.save("indexeddb://nsfwjs-model");
|
|
console.log("NSFWJS 模型已从网络加载并保存到 IndexedDB");
|
|
}
|
|
|
|
return nsfwModelCache;
|
|
};
|
|
/**
|
|
* Predicts the NSFW score of an image using the NSFWJS model.
|
|
* @param model
|
|
* @param image
|
|
*/
|
|
const predictNSFW = async (model: NSFWJS, image: tf.Tensor3D | ImageData | HTMLImageElement | HTMLCanvasElement | HTMLVideoElement): Promise<boolean> => {
|
|
const predictions = await model.classify(image, 5);
|
|
// 定义阈值与对应的类别
|
|
const thresholds = {
|
|
'Porn': 0.6,
|
|
'Hentai': 0.3,
|
|
'Sexy': 0.6
|
|
};
|
|
|
|
// 使用一个变量来确定是否为色情内容
|
|
let isNSFW: boolean = false;
|
|
|
|
// 遍历预测结果,并检查是否满足阈值
|
|
for (const prediction of predictions) {
|
|
const className = prediction.className;
|
|
const probability = prediction.probability;
|
|
|
|
// 检查预测类别是否在阈值对象中
|
|
if (thresholds[className] !== undefined && probability >= thresholds[className]) {
|
|
isNSFW = true;
|
|
break; // 早期退出,如果满足任一条件
|
|
}
|
|
}
|
|
|
|
return isNSFW; // 返回是否为色情图片
|
|
};
|
|
|
|
export {initNSFWJs, predictNSFW};
|