#include #include enum STATE { F, W }; struct subAreaNode { int addr; // 起始地址 int size; // 分区大小 int taskId; // 作业号 STATE state; // 分区状态 subAreaNode *pre; // 分区前向指针 subAreaNode *nxt; // 分区后向指针 } subHead; // 初始化空闲分区链 void intSubArea() { // 分配初始分区内存 subAreaNode *fir = (subAreaNode *)malloc(sizeof(subAreaNode)); // 给首个分区赋值 fir->addr = 0; fir->size = 95; // 内存初始大小 fir->state = F; fir->taskId = -1; fir->pre = &subHead; fir->nxt = NULL; // 初始化分区头部信息 subHead.pre = NULL; subHead.nxt = fir; } //// 首次适应算法 //int firstFit(int taskId, int size) //{ //subAreaNode *p = subHead.nxt; //while (p != NULL) //{ //if (p->state == F && p->size >= size) //{ //// 找到要分配的空闲分区 //if (p->size - size <= 10) //{ //// 整块分配 //p->state = W; //p->taskId = taskId; //} //else { //// 分配大小为size的区间 //subAreaNode *node = (subAreaNode *)malloc(sizeof(subAreaNode)); //node->addr = p->addr + size; //node->size = p->size - size; //node->state = F; //node->taskId = -1; //// 修改分区链节点指针 //node->pre = p; //node->nxt = p->nxt; //if (p->nxt != NULL) //{ //p->nxt->pre = node; //} //p->nxt = node; //// 分配空闲区间 //p->size = size; //p->state = W; //p->taskId = taskId; //} //printf("内存分配成功!\n"); //return 1; //} //p = p->nxt; //} //printf("找不到合适的内存分区,分配失败...\n"); //return 0; //} //struct subAreaNode *node void BestFit(int taskId, int size) { //最坏适应 //最佳块指针 struct subAreaNode *q = NULL; subAreaNode *node = subHead.nxt; //首先找到第一个满足条件的空闲块 while (node != NULL) { if (node->state == F && node->size >= size) { q = node; break; } //如果下一个为空则说明没有空闲区可以分配 if (node->nxt == NULL) { printf("分配失败,没有足够的空间!\n"); break; } else { node = node->nxt; } } //遍历寻找最佳的空闲块 while (node != NULL) { if (node->state == F && node->size >= size && node->size < q->size) { //空闲的空间 q = node; } node = node->nxt; } if (q->size > size) { //最佳空闲块的大小大于需求大小 //分配后剩余的空间 struct subAreaNode *p = (struct subAreaNode*)malloc(sizeof(struct subAreaNode)); p->addr = q->addr + size; p->size = q->size - size; p->state = F; p->taskId = -1; //分配的空间 q->taskId = taskId; q->size = size; q->state = W; //改变节点的连接 p->nxt = q->nxt; q->nxt = p; } else if (q->size == size) { //最佳空闲块空间大小和需求相等 q->taskId = taskId; q->size = size; q->state = W; } } int freeSubArea(int taskId) { // 回收内存 int flag = 0; subAreaNode *p = subHead.nxt, *pp; while (p != NULL) { if (p->state == W && p->taskId == taskId) { flag = 1; if ((p->pre != &subHead && p->pre->state == F) && (p->nxt != NULL && p->nxt->state == F)) { // 情况1:合并上下两个分区 // 先合并上区间 pp = p; p = p->pre; p->size += pp->size; p->nxt = pp->nxt; pp->nxt->pre = p; free(pp); // 后合并下区间 pp = p->nxt; p->size += pp->size; p->nxt = pp->nxt; if (pp->nxt != NULL) { pp->nxt->pre = p; } free(pp); } else if ((p->pre == &subHead || p->pre->state == W) && (p->nxt != NULL && p->nxt->state == F)) { // 情况2:只合并下面的分区 pp = p->nxt; p->size += pp->size; p->state = F; p->taskId = -1; p->nxt = pp->nxt; if (pp->nxt != NULL) { pp->nxt->pre = p; } free(pp); } else if ((p->pre != &subHead && p->pre->state == F) && (p->nxt == NULL || p->nxt->state == W)) { // 情况3:只合并上面的分区 pp = p; p = p->pre; p->size += pp->size; p->nxt = pp->nxt; if (pp->nxt != NULL) { pp->nxt->pre = p; } free(pp); } else { // 情况4:上下分区均不用合并 p->state = F; p->taskId = -1; } } p = p->nxt; } if (flag == 1) { // 回收成功 printf("内存分区回收成功...\n"); return 1; } else { // 找不到目标作业,回收失败 printf("找不到目标作业,内存分区回收失败...\n"); return 0; } } // 显示空闲分区链情况 void showSubArea() { printf("\n"); printf(" 当前的内存分配情况如下: \n"); printf(" W:工作状态 F:空闲状态 \n"); printf("___________________________________________\n"); printf("| 起始地址 | 空间大小 | 工作状态 | 作业号 |\n"); subAreaNode *p = subHead.nxt; while (p != NULL) { printf("___________________________________________\n"); printf(" %3d k |", p->addr); printf(" %3d k |", p->size); printf(" %s |", p->state == F ? "F" : "W"); if (p->taskId > 0) { printf(" %2d ", p->taskId); } else { printf(" "); } printf("\n"); p = p->nxt; } printf("___________________________________________\n"); } int main() { int ope, taskId, size; char name; int ArriveTime; int ServerTime; // 初始化空闲分区链 intSubArea(); // 模拟动态分区分配算法 while (1) { printf("默认FF(首次适应算法)\n"); printf("_________________________________________\n"); printf("| 1: 分配内存 2: 回收内存 0: 退出 |\n"); printf("|________________________________________|\n"); scanf("%d", &ope); if (ope == 0) break; if (ope == 1) { // 模拟分配内存 printf("请输入作业号: "); scanf("%d", &taskId); printf("请输入作业名: "); scanf("%s", &name); printf("请输入到达时间: "); scanf("%d", &ArriveTime); printf("请输入服务时间: "); scanf("%d", &ServerTime); printf("请输入需要分配的内存大小(KB): "); scanf("%d", &size); if (size <= 0) { printf("错误:分配内存大小必须为正值\n"); continue; } // 调用分配算法 //firstFit(taskId, size); BestFit(taskId, size); // 显示空闲分区链情况 showSubArea(); } else if (ope == 2) { // 模拟回收内存 printf("请输入要回收的作业号: "); scanf("%d", &taskId); freeSubArea(taskId); // 显示空闲分区链情况 showSubArea(); } else { printf("错误:请输入 0/1/2\n"); } } printf("分配算法模拟结束\n"); system("pause"); return 0; }