Fourth commit

This commit is contained in:
lan daiqing
2022-07-27 20:41:38 +08:00
parent 079dd34037
commit 3d78b6edb3
11 changed files with 623 additions and 105 deletions

View File

@@ -5,46 +5,55 @@
# @File : Blue_noise_sampling.py
# @Software: PyCharm
'''
计算新图形(放大后或缩小后)的坐标点像素值对应于原图像中哪一个像素点填充的。
src是原图dst是新图原来的图像宽度/高度除以新图像的宽度/高度可以得到缩放比例假如是缩小图片括号内的数字小于1放大则大于1相当于系数再乘以新图片的宽度/高度,就实现了缩放。
'''
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import math
# # 最近邻插值算法
# # dstH为新图的高;dstW为新图的宽
# def blueNoiseSampl(img, dstH, dstW):
# scrH, scrW, t = img.shape # src原图的长宽
# retimg = np.zeros((dstH, dstW, 3), dtype=np.uint8)
# for i in range(dstH - 1):
# for j in range(dstW - 1):
# scrx = round(i * (scrH / dstH))
# scry = round(j * (scrW / dstW))
# retimg[i, j] = img[scrx, scry]
#
# return retimg
#
#
# im_path = './data/th.png'
# image = np.array(Image.open(im_path))
#
# plt.figure(figsize=(16, 8))
#
# plt.subplot(1, 2, 1)
# plt.imshow(image)
#
# image1 = blueNoiseSampl(image, image.shape[0] * 2, image.shape[1] * 2)
# # 从array转换成image
# image1 = Image.fromarray(image1.astype('uint8')).convert('RGB')
# image1.save('./data/picture13.png')
# plt.subplot(1, 2, 2)
# plt.imshow(image1)
# plt.show()
from PIL import Image
'''
srcX=newX*(srcW/newW)
srcY=newY*(srcH/newH)
src是原图dst是新图原来的图像宽度/高度除以新图像的宽度/高度可以得到缩放比例,
假如是缩小图片括号内的数字小于1放大则大于1相当于系数再乘以新图片的宽度/高度,就实现了缩放。
'''
def blueNoiseSampl(img, newH, newW):
'''
:param img: 图片
:param newH: 新图的高
:param newW: 新图的宽
:return: 新图
'''
scrH, scrW, t = img.shape # 原图的长宽
retimg = np.zeros((newH, newW, 3), dtype=np.uint8) # 生成 newH* newW *3 的零矩阵
for i in range(newH - 1):
for j in range(newW - 1):
scrx = round(i * (scrH / newH)) # round对其四舍五入
scry = round(j * (scrW / newW))
retimg[i, j] = img[scrx, scry] # new image
return retimg
# 图片展示函数
def showImage(picPath):
'''
:param picPath: 图片地址
:return: 样图
'''
# 获取图片矩阵
image = np.array(Image.open(picPath))
# 设置画布
plt.figure(figsize=(16, 8))
# 合并
plt.subplot(121)
plt.imshow(image)
# 调用采样函数
image1 = blueNoiseSampl(image, image.shape[0] * 2, image.shape[1] * 2)
# 图片保存
Image.fromarray(np.uint8(image1)).save("./data/picture13.png")
plt.subplot(122)
plt.imshow(image1)
plt.show()
return image1