✨ add image EXIF information extraction function
This commit is contained in:
1
components.d.ts
vendored
1
components.d.ts
vendored
@@ -8,6 +8,7 @@ export {}
|
||||
declare module 'vue' {
|
||||
export interface GlobalComponents {
|
||||
AAvatar: typeof import('ant-design-vue/es')['Avatar']
|
||||
AAvatarGroup: typeof import('ant-design-vue/es')['AvatarGroup']
|
||||
ABadge: typeof import('ant-design-vue/es')['Badge']
|
||||
AButton: typeof import('ant-design-vue/es')['Button']
|
||||
ACard: typeof import('ant-design-vue/es')['Card']
|
||||
|
20
package.json
20
package.json
@@ -31,7 +31,7 @@
|
||||
"@types/animejs": "^3.1.12",
|
||||
"@types/crypto-js": "^4.2.2",
|
||||
"@types/json-stringify-safe": "^5.0.3",
|
||||
"@types/node": "^22.10.6",
|
||||
"@types/node": "^22.10.7",
|
||||
"@types/nprogress": "^0.2.3",
|
||||
"@vladmandic/face-api": "^1.7.14",
|
||||
"@vuepic/vue-datepicker": "^11.0.1",
|
||||
@@ -46,15 +46,16 @@
|
||||
"crypto-js": "^4.2.0",
|
||||
"echarts": "^5.6.0",
|
||||
"eslint": "9.18.0",
|
||||
"exifr": "^7.1.3",
|
||||
"go-captcha-vue": "^2.0.5",
|
||||
"gsap": "^3.12.5",
|
||||
"gsap": "^3.12.7",
|
||||
"jsencrypt": "^3.3.2",
|
||||
"json-stringify-safe": "^5.0.1",
|
||||
"less": "^4.2.1",
|
||||
"less": "^4.2.2",
|
||||
"localforage": "^1.10.0",
|
||||
"nprogress": "^0.2.0",
|
||||
"nsfwjs": "^4.2.1",
|
||||
"pinia": "^2.3.0",
|
||||
"pinia": "^2.3.1",
|
||||
"pinia-plugin-persistedstate-2": "^2.0.28",
|
||||
"qrcode": "^1",
|
||||
"seedrandom": "^3.0.5",
|
||||
@@ -62,7 +63,7 @@
|
||||
"unplugin-auto-import": "^19.0.0",
|
||||
"vite-plugin-compression": "^0.5.1",
|
||||
"vite-plugin-html": "^3.2.2",
|
||||
"vite-plugin-node-polyfills": "^0.22.0",
|
||||
"vite-plugin-node-polyfills": "^0.23.0",
|
||||
"vue": "^3.5.13",
|
||||
"vue-dompurify-html": "^5.2.0",
|
||||
"vue-i18n": "^11.0.1",
|
||||
@@ -75,21 +76,18 @@
|
||||
"@vitejs/plugin-vue": "^5.2.1",
|
||||
"eslint-plugin-vue": "^9.32.0",
|
||||
"globals": "^15.14.0",
|
||||
"sass": "^1.83.3",
|
||||
"sass": "^1.83.4",
|
||||
"typescript": "^5.7.3",
|
||||
"typescript-eslint": "^8.20.0",
|
||||
"unplugin-vue-components": "^28.0.0",
|
||||
"vite": "^6.0.7",
|
||||
"vite": "^6.0.9",
|
||||
"vite-plugin-bundle-obfuscator": "1.4.0",
|
||||
"vite-plugin-chunk-split": "^0.5.0",
|
||||
"vue-tsc": "2.2.0"
|
||||
},
|
||||
"overrides": {
|
||||
"vite-plugin-node-polyfills": {
|
||||
"vite": "^6.0.7"
|
||||
},
|
||||
"vite-plugin-chunk-split": {
|
||||
"vite": "^6.0.7"
|
||||
"vite": "^6.0.9"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -1,7 +1,7 @@
|
||||
import {service} from "@/utils/alova/service.ts";
|
||||
|
||||
export const uploadFile = (formData) => {
|
||||
return service.Post('/api/auth/file/uploads', formData, {
|
||||
return service.Post('/api/auth/storage/uploads', formData, {
|
||||
meta: {
|
||||
ignoreToken: false,
|
||||
signature: false,
|
@@ -5,7 +5,7 @@ import {cancelCommentLikeApi, commentLikeApi, commentListApi, replyListApi} from
|
||||
import {message} from "ant-design-vue";
|
||||
import {getSlideCaptchaDataApi} from "@/api/captcha";
|
||||
import QQ_EMOJI from "@/constant/qq_emoji.ts";
|
||||
import {initNSFWJs, predictNSFW} from "@/utils/nsfw/nsfw.ts";
|
||||
import {initNSFWJs, predictNSFW} from "@/utils/tfjs/nsfw.ts";
|
||||
import {NSFWJS} from "nsfwjs";
|
||||
import i18n from "@/locales";
|
||||
import localForage from "localforage";
|
||||
|
@@ -1,8 +1,12 @@
|
||||
import localforage from 'localforage';
|
||||
|
||||
interface UploadPredictResult {
|
||||
isAnime: boolean;
|
||||
hasFace: boolean;
|
||||
objectArray: string[] | unknown[];
|
||||
landscape: 'building' | 'forest' | 'glacier' | 'mountain' | 'sea' | 'street' | 'none' | undefined;
|
||||
landscape: 'building' | 'forest' | 'glacier' | 'mountain' | 'sea' | 'street' | 'none';
|
||||
isScreenshot: boolean;
|
||||
topCategory: string | undefined;
|
||||
}
|
||||
|
||||
|
||||
@@ -11,11 +15,14 @@ export const useUploadStore = defineStore(
|
||||
() => {
|
||||
const openUploadDrawer = ref<boolean>(false);
|
||||
|
||||
const exifData = ref<any>();
|
||||
const predictResult = reactive<UploadPredictResult>({
|
||||
isAnime: false,
|
||||
hasFace: false,
|
||||
objectArray: [],
|
||||
landscape: undefined as 'building' | 'forest' | 'glacier' | 'mountain' | 'sea' | 'street' | 'none' | undefined,
|
||||
landscape: 'none',
|
||||
isScreenshot: false,
|
||||
topCategory: ''
|
||||
});
|
||||
|
||||
/**
|
||||
@@ -32,21 +39,25 @@ export const useUploadStore = defineStore(
|
||||
predictResult.isAnime = false;
|
||||
predictResult.hasFace = false;
|
||||
predictResult.objectArray = [];
|
||||
predictResult.landscape = undefined;
|
||||
predictResult.landscape = 'none';
|
||||
predictResult.isScreenshot = false;
|
||||
predictResult.topCategory = '';
|
||||
}
|
||||
|
||||
|
||||
return {
|
||||
openUploadDrawer,
|
||||
predictResult,
|
||||
exifData,
|
||||
openUploadDrawerFn,
|
||||
clearPredictResult
|
||||
clearPredictResult,
|
||||
};
|
||||
},
|
||||
{
|
||||
// 开启数据持久化
|
||||
persistedState: {
|
||||
persist: false,
|
||||
storage: localStorage,
|
||||
storage: localforage,
|
||||
key: 'upload',
|
||||
includePaths: []
|
||||
}
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import {defineStore} from 'pinia';
|
||||
import {initNSFWJs, predictNSFW} from "@/utils/nsfw/nsfw.ts";
|
||||
import {initNSFWJs, predictNSFW} from "@/utils/tfjs/nsfw.ts";
|
||||
import i18n from "@/locales";
|
||||
|
||||
import {NSFWJS} from "nsfwjs";
|
||||
|
88
src/utils/imageUtils/isScreenshot.ts
Normal file
88
src/utils/imageUtils/isScreenshot.ts
Normal file
@@ -0,0 +1,88 @@
|
||||
import exifr from 'exifr';
|
||||
|
||||
/**
|
||||
* 判断图片是否是截图
|
||||
* @param {File} file - 要判断的图片文件
|
||||
* @returns {Promise<boolean>} - 返回是否是截图
|
||||
*/
|
||||
async function isScreenshot(file) {
|
||||
// 常见屏幕宽高比
|
||||
const commonAspectRatios = [16 / 9, 16 / 10, 4 / 3, 3 / 2, 1];
|
||||
const aspectRatioTolerance = 0.02; // 容差,用于宽高比校验
|
||||
const maxScreenshotSizeMB = 2; // 截图通常较小,限制最大 2MB
|
||||
|
||||
// 文件名关键词(大小写不敏感)
|
||||
const screenshotFilenameKeywords = [
|
||||
'screenshot', '屏幕截图', '截屏', 'Snip', 'Capture', 'Snapshot', '截图'
|
||||
];
|
||||
|
||||
try {
|
||||
// 文件名匹配
|
||||
const fileName = file.name.toLowerCase();
|
||||
const matchesFilename = screenshotFilenameKeywords.some(keyword =>
|
||||
fileName.includes(keyword.toLowerCase())
|
||||
);
|
||||
if (matchesFilename) {
|
||||
return true; // 如果文件名包含截图相关关键词,直接判断为截图
|
||||
}
|
||||
|
||||
// 提取 EXIF 数据
|
||||
const exifData = await exifr.parse(file, ['ImageWidth', 'ImageHeight', 'Software', 'XResolution', 'YResolution']);
|
||||
const {ImageWidth, ImageHeight, Software} = exifData || {};
|
||||
|
||||
// 如果图片没有宽高信息,直接返回 false
|
||||
if (!ImageWidth || !ImageHeight) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// 校验宽高比是否接近常见屏幕比例
|
||||
const aspectRatio = Math.max(ImageWidth, ImageHeight) / Math.min(ImageWidth, ImageHeight);
|
||||
const matchesAspectRatio = commonAspectRatios.some(
|
||||
(ratio) => Math.abs(ratio - aspectRatio) <= aspectRatioTolerance
|
||||
);
|
||||
|
||||
// 如果宽高比匹配,进一步检查
|
||||
if (matchesAspectRatio) {
|
||||
// 检查软件标记是否与截图工具相关
|
||||
const screenshotSoftwareKeywords = ['Screenshot', 'Snipping Tool', 'Screen Capture', 'Grab', 'Sketch'];
|
||||
if (Software && screenshotSoftwareKeywords.some((keyword) => Software.includes(keyword))) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// 检查文件大小(截图通常较小)
|
||||
const fileSizeMB = file.size / (1024 * 1024);
|
||||
if (fileSizeMB <= maxScreenshotSizeMB) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// 无 EXIF 数据或不匹配时,通过宽高比的容差检测
|
||||
const img: any = await getImageDimensions(file);
|
||||
const imgAspectRatio = img.width / img.height;
|
||||
const imgMatchesAspectRatio = commonAspectRatios.some(
|
||||
(ratio) => Math.abs(ratio - imgAspectRatio) <= aspectRatioTolerance
|
||||
);
|
||||
|
||||
return imgMatchesAspectRatio;
|
||||
|
||||
} catch (error) {
|
||||
console.error('判断截图时发生错误:', error);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 获取图片的宽高信息(无 EXIF 时使用)
|
||||
* @param {File} file
|
||||
* @returns {Promise<{width: number, height: number}>}
|
||||
*/
|
||||
function getImageDimensions(file) {
|
||||
return new Promise((resolve, reject) => {
|
||||
const img = new Image();
|
||||
img.onload = () => resolve({width: img.width, height: img.height});
|
||||
img.onerror = reject;
|
||||
img.src = URL.createObjectURL(file);
|
||||
});
|
||||
}
|
||||
|
||||
export default isScreenshot;
|
@@ -29,9 +29,9 @@ const predictNSFW = async (model: NSFWJS, image: tf.Tensor3D | ImageData | HTMLI
|
||||
const predictions = await model.classify(image, 5);
|
||||
// 定义阈值与对应的类别
|
||||
const thresholds = {
|
||||
'Porn': 0.5,
|
||||
'Porn': 0.6,
|
||||
'Hentai': 0.3,
|
||||
'Sexy': 0.5
|
||||
'Sexy': 0.6
|
||||
};
|
||||
|
||||
// 使用一个变量来确定是否为色情内容
|
@@ -36,7 +36,8 @@
|
||||
<p v-show="predicting" class="ant-upload-hint">
|
||||
AI 正在识别图片,请稍候...
|
||||
</p>
|
||||
<AProgress :stroke-color="{'0%': '#108ee9','100%': '#87d068',}" :percent="progressPercent" status="active"
|
||||
<AProgress :stroke-color="{'0%': '#108ee9','100%': '#87d068',}" :percent="progressPercent"
|
||||
:status="progressStatus"
|
||||
:show-info="true" size="small" type="line" v-show="predicting" style="width: 80%"/>
|
||||
</AUploadDragger>
|
||||
</div>
|
||||
@@ -46,20 +47,32 @@
|
||||
import useStore from "@/store";
|
||||
import type {UploadProps} from 'ant-design-vue';
|
||||
import {message} from "ant-design-vue";
|
||||
import {initNSFWJs, predictNSFW} from "@/utils/nsfw/nsfw.ts";
|
||||
import {initNSFWJs, predictNSFW} from "@/utils/tfjs/nsfw.ts";
|
||||
import i18n from "@/locales";
|
||||
|
||||
import {NSFWJS} from "nsfwjs";
|
||||
import {animePredictImage} from "@/utils/tfjs/anime_classifier.ts";
|
||||
import {animePredictImagePro} from "@/utils/tfjs/anime_classifier_pro.ts";
|
||||
import {fnDetectFace} from "@/utils/tfjs/face_extraction.ts";
|
||||
import {cocoSsdPredict} from "@/utils/tfjs/mobilenet.ts";
|
||||
import {predictLandscape} from "@/utils/tfjs/landscape_recognition.ts";
|
||||
import {useRequest} from 'alova/client';
|
||||
import {uploadFile} from "@/api/file";
|
||||
import {uploadFile} from "@/api/storage";
|
||||
import imageCompression from "browser-image-compression";
|
||||
import exifr from 'exifr';
|
||||
import isScreenshot from "@/utils/imageUtils/isScreenshot.ts";
|
||||
import {getCategoryByLabel} from "@/constant/coco_ssd_label_category.ts";
|
||||
|
||||
const predicting = ref<boolean>(false);
|
||||
const progressPercent = ref<number>(0);
|
||||
const progressStatus = ref<string>('active');
|
||||
|
||||
// 压缩图片配置
|
||||
const options = {
|
||||
maxSizeMB: 0.4,
|
||||
maxWidthOrHeight: 750,
|
||||
maxIteration: 2,
|
||||
useWebWorker: true,
|
||||
};
|
||||
|
||||
const upload = useStore().upload;
|
||||
const image: HTMLImageElement = document.createElement('img');
|
||||
@@ -84,9 +97,11 @@ async function beforeUpload(file: File) {
|
||||
predicting.value = true;
|
||||
upload.clearPredictResult();
|
||||
progressPercent.value = 0; // 初始化进度条
|
||||
|
||||
progressStatus.value = 'active'; // 开始状态
|
||||
// 压缩图片
|
||||
const compressedFile = await imageCompression(file, options);
|
||||
// 创建图片对象
|
||||
image.src = URL.createObjectURL(file);
|
||||
image.src = URL.createObjectURL(compressedFile);
|
||||
|
||||
image.addEventListener('webglcontextlost', (_event) => {
|
||||
window.location.reload();
|
||||
@@ -107,54 +122,86 @@ async function beforeUpload(file: File) {
|
||||
});
|
||||
};
|
||||
|
||||
// 图片 NSFW 检测
|
||||
const nsfw: NSFWJS = await initNSFWJs();
|
||||
await smoothUpdateProgress(10, 500); // 平滑更新进度条
|
||||
try {
|
||||
// NSFW 检测
|
||||
const nsfw: NSFWJS = await initNSFWJs();
|
||||
await smoothUpdateProgress(30, 500); // 平滑更新进度条
|
||||
|
||||
const isNSFW: boolean = await predictNSFW(nsfw, image);
|
||||
await smoothUpdateProgress(20, 500); // 平滑更新进度条
|
||||
const isNSFW: boolean = await predictNSFW(nsfw, image);
|
||||
await smoothUpdateProgress(50, 500); // 平滑更新进度条
|
||||
|
||||
if (isNSFW) {
|
||||
message.error(i18n.global.t('comment.illegalImage'));
|
||||
if (isNSFW) {
|
||||
message.error(i18n.global.t('comment.illegalImage'));
|
||||
predicting.value = false;
|
||||
progressPercent.value = 100; // 重置进度条
|
||||
progressStatus.value = 'exception'; // 异常状态
|
||||
return false;
|
||||
}
|
||||
|
||||
// 提取 EXIF 数据
|
||||
const exifData = await extractAllExifData(file);
|
||||
if (exifData) {
|
||||
upload.exifData = exifData;
|
||||
}
|
||||
|
||||
// 判断是否为截图
|
||||
upload.predictResult.isScreenshot = await isScreenshot(file);
|
||||
|
||||
// 动漫类型识别
|
||||
const prediction: string = await animePredictImagePro(image);
|
||||
await smoothUpdateProgress(70, 500); // 平滑更新进度条
|
||||
|
||||
// 如果是动漫类型,直接返回
|
||||
if ((prediction === 'Furry' || prediction === 'Anime')) {
|
||||
upload.predictResult.isAnime = true;
|
||||
predicting.value = false;
|
||||
progressPercent.value = 100; // 直接完成
|
||||
return true;
|
||||
}
|
||||
// 人脸检测
|
||||
const faceImageData = await fnDetectFace(image);
|
||||
if (faceImageData) {
|
||||
upload.predictResult.hasFace = true;
|
||||
predicting.value = false;
|
||||
progressPercent.value = 100; // 直接完成
|
||||
return true;
|
||||
}
|
||||
//目标检测和风景检测并行处理
|
||||
const [cocoResults, landscape] = await Promise.all([
|
||||
cocoSsdPredict(image), // 目标检测
|
||||
predictLandscape(image), // 风景检测
|
||||
]);
|
||||
await smoothUpdateProgress(100, 500); // 平滑更新进度条
|
||||
|
||||
if (cocoResults.length > 0) {
|
||||
// 取置信度最高的结果
|
||||
// 如果只有一个结果,直接取第一个
|
||||
if (cocoResults.length === 1) {
|
||||
upload.predictResult.topCategory = getCategoryByLabel(cocoResults[0].class);
|
||||
} else {
|
||||
// 多个结果时,按 score 排序,取置信度最高的结果
|
||||
const sortedResults = cocoResults.sort((a, b) => b.score - a.score);
|
||||
upload.predictResult.topCategory = getCategoryByLabel(sortedResults[0].class);
|
||||
}
|
||||
const classSet = new Set(cocoResults.map(result => result.class));
|
||||
upload.predictResult.objectArray = Array.from(classSet);
|
||||
}
|
||||
upload.predictResult.landscape = landscape as 'building' | 'forest' | 'glacier' | 'mountain' | 'sea' | 'street' | 'none';
|
||||
|
||||
predicting.value = false;
|
||||
return true;
|
||||
|
||||
} catch (error) {
|
||||
console.error('识别过程中发生错误:', error);
|
||||
predicting.value = false;
|
||||
progressPercent.value = 0; // 重置进度条
|
||||
return false;
|
||||
} finally {
|
||||
image.removeEventListener('webglcontextlost', () => void 0);
|
||||
}
|
||||
|
||||
// Step 1: 动漫预测
|
||||
const prediction1 = await animePredictImage(image);
|
||||
await smoothUpdateProgress(40, 500); // 平滑更新进度条
|
||||
|
||||
const prediction2 = await animePredictImagePro(image);
|
||||
await smoothUpdateProgress(60, 500); // 平滑更新进度条
|
||||
|
||||
upload.predictResult.isAnime = prediction1 === 'Anime' && (prediction2 === 'Furry' || prediction2 === 'Anime');
|
||||
|
||||
// Step 2: 人脸检测
|
||||
const faceImageData = await fnDetectFace(image);
|
||||
await smoothUpdateProgress(80, 500); // 平滑更新进度条
|
||||
|
||||
upload.predictResult.hasFace = !!faceImageData;
|
||||
|
||||
// Step 3: 目标识别
|
||||
const cocoResults = await cocoSsdPredict(image);
|
||||
await smoothUpdateProgress(90, 500); // 平滑更新进度条
|
||||
|
||||
if (cocoResults.length > 0) {
|
||||
const classSet = new Set(cocoResults.map(result => result.class));
|
||||
upload.predictResult.objectArray = Array.from(classSet);
|
||||
}
|
||||
|
||||
// Step 4: 风景识别
|
||||
upload.predictResult.landscape = await predictLandscape(image);
|
||||
await smoothUpdateProgress(100, 500); // 平滑更新进度条
|
||||
|
||||
// 完成
|
||||
predicting.value = false;
|
||||
image.removeEventListener('webglcontextlost', () => void 0);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
const {uploading, send: submitFile, abort} = useRequest(uploadFile, {
|
||||
immediate: false,
|
||||
debounce: 500,
|
||||
@@ -168,11 +215,10 @@ async function customUploadRequest(file: any) {
|
||||
|
||||
const formData = new FormData();
|
||||
formData.append("file", file.file);
|
||||
formData.append("result", JSON.stringify({
|
||||
uid: file.file.uid,
|
||||
fileName: file.file.name, // 添加文件名
|
||||
fileType: file.file.type, // 添加文件类型
|
||||
detectionResult: upload.predictResult,
|
||||
formData.append("data", JSON.stringify({
|
||||
fileType: file.file.type,
|
||||
...upload.predictResult,
|
||||
exif: JSON.stringify(upload.exifData) || '',
|
||||
}));
|
||||
watch(
|
||||
() => uploading.value,
|
||||
@@ -183,7 +229,11 @@ async function customUploadRequest(file: any) {
|
||||
},
|
||||
);
|
||||
submitFile(formData).then((response: any) => {
|
||||
file.onSuccess(response.data, file);
|
||||
if (response && response.code === 200) {
|
||||
file.onSuccess(response.data, file);
|
||||
} else {
|
||||
file.onError(response.data, file);
|
||||
}
|
||||
}).catch(file.onError);
|
||||
}
|
||||
|
||||
@@ -206,6 +256,29 @@ function removeFile(file: any) {
|
||||
fileList.value = fileList.value.filter((item: any) => item.uid !== file.uid);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* 提取 EXIF 数据
|
||||
* @param {File} file - 图片文件
|
||||
* @returns {Promise<Object|null>} - 返回所有 EXIF 数据或 null(如果格式不支持或提取失败)
|
||||
*/
|
||||
async function extractAllExifData(file) {
|
||||
const supportedFormats = ['image/jpeg', 'image/tiff', 'image/iiq', 'image/heif', 'image/heic', 'image/avif', 'image/png'];
|
||||
|
||||
// 判断文件格式是否支持
|
||||
if (!supportedFormats.includes(file.type)) {
|
||||
return null;
|
||||
}
|
||||
|
||||
try {
|
||||
// 提取所有 EXIF 数据
|
||||
return await exifr.parse(file, {ifd0: false, exif: true} as any);
|
||||
} catch (error) {
|
||||
console.error("提取 EXIF 数据失败:", error);
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
</script>
|
||||
<style lang="less" scoped>
|
||||
|
||||
|
Reference in New Issue
Block a user