add image EXIF information extraction function

This commit is contained in:
2025-01-20 19:26:41 +08:00
parent e1ee33946d
commit 0255e6b75e
9 changed files with 244 additions and 73 deletions

View File

@@ -36,7 +36,8 @@
<p v-show="predicting" class="ant-upload-hint">
AI 正在识别图片请稍候...
</p>
<AProgress :stroke-color="{'0%': '#108ee9','100%': '#87d068',}" :percent="progressPercent" status="active"
<AProgress :stroke-color="{'0%': '#108ee9','100%': '#87d068',}" :percent="progressPercent"
:status="progressStatus"
:show-info="true" size="small" type="line" v-show="predicting" style="width: 80%"/>
</AUploadDragger>
</div>
@@ -46,20 +47,32 @@
import useStore from "@/store";
import type {UploadProps} from 'ant-design-vue';
import {message} from "ant-design-vue";
import {initNSFWJs, predictNSFW} from "@/utils/nsfw/nsfw.ts";
import {initNSFWJs, predictNSFW} from "@/utils/tfjs/nsfw.ts";
import i18n from "@/locales";
import {NSFWJS} from "nsfwjs";
import {animePredictImage} from "@/utils/tfjs/anime_classifier.ts";
import {animePredictImagePro} from "@/utils/tfjs/anime_classifier_pro.ts";
import {fnDetectFace} from "@/utils/tfjs/face_extraction.ts";
import {cocoSsdPredict} from "@/utils/tfjs/mobilenet.ts";
import {predictLandscape} from "@/utils/tfjs/landscape_recognition.ts";
import {useRequest} from 'alova/client';
import {uploadFile} from "@/api/file";
import {uploadFile} from "@/api/storage";
import imageCompression from "browser-image-compression";
import exifr from 'exifr';
import isScreenshot from "@/utils/imageUtils/isScreenshot.ts";
import {getCategoryByLabel} from "@/constant/coco_ssd_label_category.ts";
const predicting = ref<boolean>(false);
const progressPercent = ref<number>(0);
const progressStatus = ref<string>('active');
// 压缩图片配置
const options = {
maxSizeMB: 0.4,
maxWidthOrHeight: 750,
maxIteration: 2,
useWebWorker: true,
};
const upload = useStore().upload;
const image: HTMLImageElement = document.createElement('img');
@@ -84,9 +97,11 @@ async function beforeUpload(file: File) {
predicting.value = true;
upload.clearPredictResult();
progressPercent.value = 0; // 初始化进度条
progressStatus.value = 'active'; // 开始状态
// 压缩图片
const compressedFile = await imageCompression(file, options);
// 创建图片对象
image.src = URL.createObjectURL(file);
image.src = URL.createObjectURL(compressedFile);
image.addEventListener('webglcontextlost', (_event) => {
window.location.reload();
@@ -107,54 +122,86 @@ async function beforeUpload(file: File) {
});
};
// 图片 NSFW 检测
const nsfw: NSFWJS = await initNSFWJs();
await smoothUpdateProgress(10, 500); // 平滑更新进度条
try {
// NSFW 检测
const nsfw: NSFWJS = await initNSFWJs();
await smoothUpdateProgress(30, 500); // 平滑更新进度条
const isNSFW: boolean = await predictNSFW(nsfw, image);
await smoothUpdateProgress(20, 500); // 平滑更新进度条
const isNSFW: boolean = await predictNSFW(nsfw, image);
await smoothUpdateProgress(50, 500); // 平滑更新进度条
if (isNSFW) {
message.error(i18n.global.t('comment.illegalImage'));
if (isNSFW) {
message.error(i18n.global.t('comment.illegalImage'));
predicting.value = false;
progressPercent.value = 100; // 重置进度条
progressStatus.value = 'exception'; // 异常状态
return false;
}
// 提取 EXIF 数据
const exifData = await extractAllExifData(file);
if (exifData) {
upload.exifData = exifData;
}
// 判断是否为截图
upload.predictResult.isScreenshot = await isScreenshot(file);
// 动漫类型识别
const prediction: string = await animePredictImagePro(image);
await smoothUpdateProgress(70, 500); // 平滑更新进度条
// 如果是动漫类型,直接返回
if ((prediction === 'Furry' || prediction === 'Anime')) {
upload.predictResult.isAnime = true;
predicting.value = false;
progressPercent.value = 100; // 直接完成
return true;
}
// 人脸检测
const faceImageData = await fnDetectFace(image);
if (faceImageData) {
upload.predictResult.hasFace = true;
predicting.value = false;
progressPercent.value = 100; // 直接完成
return true;
}
//目标检测和风景检测并行处理
const [cocoResults, landscape] = await Promise.all([
cocoSsdPredict(image), // 目标检测
predictLandscape(image), // 风景检测
]);
await smoothUpdateProgress(100, 500); // 平滑更新进度条
if (cocoResults.length > 0) {
// 取置信度最高的结果
// 如果只有一个结果,直接取第一个
if (cocoResults.length === 1) {
upload.predictResult.topCategory = getCategoryByLabel(cocoResults[0].class);
} else {
// 多个结果时,按 score 排序,取置信度最高的结果
const sortedResults = cocoResults.sort((a, b) => b.score - a.score);
upload.predictResult.topCategory = getCategoryByLabel(sortedResults[0].class);
}
const classSet = new Set(cocoResults.map(result => result.class));
upload.predictResult.objectArray = Array.from(classSet);
}
upload.predictResult.landscape = landscape as 'building' | 'forest' | 'glacier' | 'mountain' | 'sea' | 'street' | 'none';
predicting.value = false;
return true;
} catch (error) {
console.error('识别过程中发生错误:', error);
predicting.value = false;
progressPercent.value = 0; // 重置进度条
return false;
} finally {
image.removeEventListener('webglcontextlost', () => void 0);
}
// Step 1: 动漫预测
const prediction1 = await animePredictImage(image);
await smoothUpdateProgress(40, 500); // 平滑更新进度条
const prediction2 = await animePredictImagePro(image);
await smoothUpdateProgress(60, 500); // 平滑更新进度条
upload.predictResult.isAnime = prediction1 === 'Anime' && (prediction2 === 'Furry' || prediction2 === 'Anime');
// Step 2: 人脸检测
const faceImageData = await fnDetectFace(image);
await smoothUpdateProgress(80, 500); // 平滑更新进度条
upload.predictResult.hasFace = !!faceImageData;
// Step 3: 目标识别
const cocoResults = await cocoSsdPredict(image);
await smoothUpdateProgress(90, 500); // 平滑更新进度条
if (cocoResults.length > 0) {
const classSet = new Set(cocoResults.map(result => result.class));
upload.predictResult.objectArray = Array.from(classSet);
}
// Step 4: 风景识别
upload.predictResult.landscape = await predictLandscape(image);
await smoothUpdateProgress(100, 500); // 平滑更新进度条
// 完成
predicting.value = false;
image.removeEventListener('webglcontextlost', () => void 0);
return true;
}
const {uploading, send: submitFile, abort} = useRequest(uploadFile, {
immediate: false,
debounce: 500,
@@ -168,11 +215,10 @@ async function customUploadRequest(file: any) {
const formData = new FormData();
formData.append("file", file.file);
formData.append("result", JSON.stringify({
uid: file.file.uid,
fileName: file.file.name, // 添加文件名
fileType: file.file.type, // 添加文件类型
detectionResult: upload.predictResult,
formData.append("data", JSON.stringify({
fileType: file.file.type,
...upload.predictResult,
exif: JSON.stringify(upload.exifData) || '',
}));
watch(
() => uploading.value,
@@ -183,7 +229,11 @@ async function customUploadRequest(file: any) {
},
);
submitFile(formData).then((response: any) => {
file.onSuccess(response.data, file);
if (response && response.code === 200) {
file.onSuccess(response.data, file);
} else {
file.onError(response.data, file);
}
}).catch(file.onError);
}
@@ -206,6 +256,29 @@ function removeFile(file: any) {
fileList.value = fileList.value.filter((item: any) => item.uid !== file.uid);
}
/**
* 提取 EXIF 数据
* @param {File} file - 图片文件
* @returns {Promise<Object|null>} - 返回所有 EXIF 数据或 null如果格式不支持或提取失败
*/
async function extractAllExifData(file) {
const supportedFormats = ['image/jpeg', 'image/tiff', 'image/iiq', 'image/heif', 'image/heic', 'image/avif', 'image/png'];
// 判断文件格式是否支持
if (!supportedFormats.includes(file.type)) {
return null;
}
try {
// 提取所有 EXIF 数据
return await exifr.parse(file, {ifd0: false, exif: true} as any);
} catch (error) {
console.error("提取 EXIF 数据失败:", error);
return null;
}
}
</script>
<style lang="less" scoped>